On the tensor semigroup of affine Kac-Moody lie algebras

نویسندگان

چکیده

The support of the tensor product decomposition integrable irreducible highest weight representations a symmetrizable Kac-Moody Lie algebra g \mathfrak {g} defines semigroup triples weights. Namely, given alttext="lamda"> λ encoding="application/x-tex">\lambda in set alttext="upper P Subscript plus"> P + encoding="application/x-tex">P_+ dominant integral weights, V left-parenthesis lamda right-parenthesis"> V ( stretchy="false">) encoding="application/x-tex">V(\lambda ) denotes representation with . We are interested tensor semigroup mathvariant="normal">Γ 3 stretchy="false">| ⊂<!-- ⊂ <mml:mo>⊗<!-- ⊗ stretchy="false">} encoding="application/x-tex">\begin{equation*} \Gamma _{\mathbb {N}}(\mathfrak {g})≔\{(\lambda _1,\lambda _2,\mu )\in P_{+}^3\,|\, V(\mu )\subset V(\lambda _1)\otimes _2)\}, \end{equation*} and cone encoding="application/x-tex">\Gamma (\mathfrak {g}) it generates: Q there-exists greater-than-or-equal-to period"> mathvariant="double-struck">Q mathvariant="normal">∃<!-- ∃ <mml:mi>N ≥<!-- ≥ width="1em" <mml:mo>. P_{+,{\mathbb {Q}}}^3\,|\,\exists N\geq \quad V(N\mu V(N\lambda _2)\}. Here, Q"> encoding="application/x-tex">P_{+,{\mathbb {Q}}} rational convex cone generated by In special case when is finite-dimensional semisimple algebra, known to be finitely hence polyhedral. Moreover, described Belkale Kumar [Invent. Math. 166 (2006), pp. 185–228] an explicit finite list inequalities. general, neither polyhedral, nor closed. this article we describe closure countable family linear inequalities for any untwisted affine which most important class infinite-dimensional algebra. This solves Brown-Kumar’s conjecture (see Brown [Math. Ann. 360 (2014), 901–936]). difference between measured saturation factors. positive integer alttext="d"> d encoding="application/x-tex">d called factor, if encoding="application/x-tex">V(N\lambda _2) contains encoding="application/x-tex">V(N\mu some N"> encoding="application/x-tex">N then d encoding="application/x-tex">V(d\lambda V(d\lambda encoding="application/x-tex">V(d\mu , assuming that alttext="mu minus 2"> −<!-- − encoding="application/x-tex">\mu -\lambda _1-\lambda _2 belongs root lattice. For equals s l n"> = mathvariant="fraktur">s mathvariant="fraktur">l n {g}={\mathfrak {sl}}_n famous Knutson-Tao theorem asserts alttext="d 1"> encoding="application/x-tex">d=1 saturation factor Knutson Tao [J. Amer. Soc. 12 (1999), 1055–1090]). More generally, simple factors known. case, not necessarily existence such unclear priori. obtain example, type A overTilde A stretchy="false">~<!-- ~ </mml:mover> encoding="application/x-tex">\tilde A_n prove encoding="application/x-tex">d\geq 2 factor, generalizing A_1 shown 901–936].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pairing Problem of Generators in Affine Kac-Moody Lie Algebras

In this paper, we discuss the pair problem of generators in affine Kac-Moody Lie algebras. For any affine Kac-Moody algebra g(A) of X l type and arbitrary nonzero imaginary root vector x, we prove that there exists some y ∈ g(A), such that g′(A) is contained in the Lie algebra generated by x and y.

متن کامل

Regular Subalgebras of Affine Kac–moody Algebras

We classify regular subalgebras of affine Kac–Moody algebras in terms of their root systems. In the process, we establish that a root system of a subalgebra is always an intersection of the root system of the algebra with a sublattice of its root lattice. We also discuss applications to investigations of regular subalgebras of hyperbolic Kac–Moody algebras and conformally invariant subalgebras ...

متن کامل

Algorithms for affine Kac-Moody algebras

Weyl groups are ubiquitous, and efficient algorithms for them — especially for the exceptional algebras — are clearly desirable. In this letter we provide several of these, addressing practical concerns arising naturally for instance in computational aspects of the study of affine algebras or Wess-Zumino-Witten (WZW) conformal field theories. We also discuss the efficiency and numerical accurac...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Characters of Representations of Affine Kac-moody Lie Algebras at the Critical Level

for X,Y ∈ ḡ, m,n ∈ Z, where X(m) = X⊗t with X ∈ ḡ and m ∈ Z and (·|·) is the normalized invariant inner product of ḡ. We identify ḡ with ḡ⊗C ⊂ g. Fix the triangular decomposition ḡ = n̄− ⊕ h̄⊕ n̄+, and the Cartan subalgebra of g as h = h̄⊕CK ⊕CD. We have h = h̄ ⊕CΛ0 ⊕Cδ, where Λ0 and δ are elements dual to K and D, respectively. Let L(λ) be the irreducible highest weight representation of g of highe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Mathematical Society

سال: 2021

ISSN: ['0894-0347', '1088-6834']

DOI: https://doi.org/10.1090/jams/975